Formal representation of the high osmolarity glycerol pathway in yeast.

نویسندگان

  • Clemens Kühn
  • K V S Prasad
  • Edda Klipp
  • Peter Gennemark
چکیده

The high osmolarity glycerol (HOG) signalling system in yeast belongs to the class of Mitogen Activated Protein Kinase (MAPK) pathways that are found in all eukaryotic organisms. It includes at least three scaffold proteins that form complexes, and involves reactions that are strictly dependent on the set of species bound to a certain complex. The scaffold proteins lead to a combinatorial increase in the number of possible states. To date, representations of the HOG pathway have used simplifying assumptions to avoid this combinatorial problem. Such assumptions are hard to make and may obscure or remove essential properties of the system. This paper presents a detailed generic formal representation of the HOG system without such assumptions, showing the molecular interactions known from the literature. The model takes complexes into account, and summarises existing knowledge in an unambiguous and detailed representation. It can thus be used to anchor discussions about the HOG system. In the commonly used Systems Biology Markup Language (SBML), such a model would need to explicitly enumerate all state variables. The Kappa modelling language which we use supports representation of complexes without such enumeration. To conclude, we compare Kappa with a few other modelling languages and software tools that could also be used to represent and model the HOG system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae

BACKGROUND Glycerol, whose formation contributes to cellular redox balancing and osmoregulation in Saccharomyces cerevisiae, is an important by-product of yeast-based bioethanol production. Replacing the glycerol pathway by an engineered pathway for NAD+-dependent acetate reduction has been shown to improve ethanol yields and contribute to detoxification of acetate-containing media. However, th...

متن کامل

Osmotic stress signaling and osmoadaptation in yeasts.

The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MA...

متن کامل

Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae.

Signal transduction pathways control cellular responses to extrinsic and intrinsic signals. The yeast HOG (High Osmolarity Glycerol) response pathway mediates cellular adaptation to hyperosmotic stress. Pathway architecture as well as the flow of signal have been studied to a very high degree of detail. Recently, the yeast HOG pathway has become a popular model to analyse systems level properti...

متن کامل

The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast.

The high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway mediates adaptation to high-osmolarity stress in the yeast Saccharomyces cerevisiae. Here we investigate the function of HOG in the human opportunistic fungal pathogen Candida glabrata. C. glabrata sho1Delta (Cgsho1Delta) deletion strains from the sequenced ATCC 2001 strain display severe growth defects under hype...

متن کامل

The Dynamical Systems Properties of the HOG Signaling Cascade

The High Osmolarity Glycerol (HOG) MAP kinase pathway in the budding yeast Saccharomyces cerevisiae is one of the best characterized model signaling pathways. The pathway processes external signals of increased osmolarity into appropriate physiological responses within the yeast cell. Recent advances in microfluidic technology coupled with quantitative modeling, and techniques from reverse syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2010